A novel approach for Hyper Spectral Images using Transfer Learning
نویسندگان
چکیده
منابع مشابه
Structure Representation for Hyper spectral Images Using Binary Classification
Binary Partition Trees are hierarchical region-based representations of images. They define a reduced set of regions that covers the image support and that spans various levels of resolution. They are attractive for object detection as they tremendously reduce the search space. In this paper, several issues related to the use of BPT for object detection are studied. Concerning the tree construc...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملPersonalized Tag Recommendation for Images Using Deep Transfer Learning
Image tag recommendation in social media systems provides the users with personalized tag suggestions which facilitate the users’ tagging task and enable automatic organization and many image retrieval tasks. Factorization models are a widely used approach for personalized tag recommendation and achieve good results. These methods rely on the user’s tagging preferences only and ignore the conte...
متن کاملNeural Stain-Style Transfer Learning using GAN for Histopathological Images
Performance of data-driven network for tumor classification varies with stain-style of histopathological images. This article proposes the stain-style transfer (SST) model based on conditional generative adversarial networks (GANs) which is to learn not only the certain color distribution but also the corresponding histopathological pattern. Our model considers feature-preserving loss in additi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-899X
DOI: 10.1088/1757-899x/1022/1/012120